Properties of the Robinson-schensted Correspondence for Oscillating and Skew Oscillating Tableaux

نویسنده

  • CEDRIC CHAUVE
چکیده

In this paper, we consider the Robinson-Schensted correspondence for oscillating tab-leaux and skew oscillating tableaux deened in 15] and 3]. First we give an analogue, for the oscillating tableaux, of the classical geometric construction of Viennot for standard tableaux ((16]). Then, we extend a construction of Sagan and Stanley ((10]), dealing with standard tableaux and skew tableaux, to deduce a property about the number of odd height columns of a skew oscillating tableau. Finally, we give analogues for skew oscillating tableaux of two classical constructions about this correspondence, Knuth classes ((7]) and Beissinger algorithm ((1]). 1. Introduction The Robinson-Schensted correspondence is a classical bijection between permutations and pairs of standard tableaux of the same shape. It was deened in 11], and followed by numerous papers dealing with the combinatorial properties of this correspondence, like 12], 7], 5], 13], 16] or 1]. More recently, this correspondence was extended to various kinds of tableaux that are generalizations, in the Young lattice, of the standard tableaux: semi-standard tableaux ((7]), skew tableaux ((10]), oscillating tableaux ((rst by Sundaram in 14, 15], then independtly Delest, Dulucq and Favreau in 2]) and skew oscillating tableaux ((3]). In this article, we extend classical properties and constructions related to the Robinson-Schensted correspondence to the correspondences for oscillating tableaux and skew oscillating tableaux. In the sections 2 and 3, we give basic deenitions on biwords and tableaux and we present the correspondence for skew oscillating tableaux. Then we extend a geometric version of the Robinson-Schensted correspondence due to Viennot ((16]) to the case of oscillating tableaux, and, following 10], we deene a construction allowing extension of properties of oscillating tableaux to skew oscillating tableaux. Finally, in sections 6 and 7, we extend to skew oscillating tableaux a result of Knuth ((7]) and an algorithm of Beissinger ((1]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

La correspondance de Robinson-Schensted pour les tableaux oscillants gauches

We introduce an analog of the Robinson Schensted algorithm for skew oscillating tableaux which generalizes the well-known correspondence for standard tableaux. We show that this new algorithm enjoys some of the same properties as the original. In particular, it is still true that replacing a permutation by its inverse exchanges the two output tableaux. These facts permit us to derive a number o...

متن کامل

Oscillating Tableaux , S p × S q - modules , and Robinson - Schensted - Knuth correspondence

The Robinson-Schensted-Knuth correspondence (RSK, see [8] and Corollary 2.5 below) is a bijection between pairs of semi-standard Young tableaux of the same shape and matrices with nonnegative integer entries with prescribed column and row sums. This correspondence plays an important role in the representation theory of the symmetric group and general linear groups, and in the theory of symmetri...

متن کامل

Oscillating tableaux and a superanalogue of the Robinson-Schensted-Knuth correspondence

In this paper, we investigate the super RSK correspondence, first introduced by Pak and Postnikov (1994), which generalizes both the RSK correspondence and the dual RSK correspondence. The bijection relates objects that are known as oscillating supertableau and (intransitive) supergraphs. We prove a number of theorems that were stated in the original paper of Pak and Postnikov, but whose proofs...

متن کامل

Skew Domino Schensted Algorithm

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999